31 resultados para enzyme analysis

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. (C) 2010 IUBMB IUBMB Life, 62(6): 467-476.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodiumfalciparum triosephosphate isomerase (PfTIM) enzyme () as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of K-d values for dimer dissociation (Q64N=73.79.2nm and Q64E=44.6 +/- 8.4nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 degrees C and 45 degrees C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding sites in hen egg-white lysozyme for neutral bromophenol red (BPR) and ionized bromophenol blue (BPB) have been characterized at 2 Å resolution. In either case, the dye-bound enzyme is active against the polysaccharide, but not against the cell wall. Both binding sites are outside, but close to, the hexasaccharide binding cleft in the enzyme. The binding site of BPR made up of Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possibly Arg125, is dose to subsite F while that of BPB made up of Tyr20, Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsites A and B. The binding sites of the neutral dye and the ionized dye are thus spatially far apart. The peptide component of the bacterial cell wall probably interacts with these cells during enzyme action. Such interactions are perhaps necessary for appropriately positioning the enzyme molecule on the bacterial cell wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP(+) to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 angstrom. The crystal belonged to space group P3(2), with unit-cell parameters a = b = 142.19, c = 123.34 angstrom. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of similar to 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size similar to 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen specific monoclonal antibodies present in crude hybridoma supernatants are normally screened by ELISA on plates coated with the relevant antigen. Screening for inhibitory monoclonals to enzymes would require the evaluation of purified antibodies or antibody containing supernatants for their inhibition of enzyme activity in a separate assay. However, screening for inhibitory antibodies against DNA transacting enzymes such as topoisomerase I (topo I) cannot be done using hybridoma supernatants due to the presence of nucleases in tissue culture media containing foetal calf serum which degrade the DNA substrates upon addition. We have developed a simple and rapid screening procedure for the identification of clones that secrete inhibitory antibodies against mycobacterial topo I using 96 well ELISA microtiter plates. The principle of the method is the selective capture of monoclonal antibodies from crude hybridoma supernatants by topo I that is tethered to the plate through the use of plate-bound polyclonal anti-topo I antibodies. This step allows the nucleases present in the medium to be washed off leaving the inhibitor bound to the tethered enzyme. The inhibitory activity of the captured antibody is assessed by performing an in situ DNA relaxation assay by the addition of supercoiled DNA substrate directly to the microtiter well followed by the analysis of the reaction products by agarose gel electrophoresis. The validity of this method was confirmed by purification of the identified inhibitory antibody and its evaluation in a DNA relaxation assay. Elimination of all enzyme-inhibitory constituents of the culture medium from the well in which the inhibitory antibody is bound to the tethered enzyme may make this method broadly applicable to enzymes such as DNA gyrases, restriction enzymes and other DNA transaction enzymes. Further, the method is simple and avoids the need of prior antibody purification for testing its inhibitory activity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure at the polypurine-polypyrimidine sequences flanking the HpaII sites (CCGG) in pBR322 form V DNA was probed employing single-hit analysis using HpaII restriction endonuclease. Reduced cleavage efficiency of HpaII sites flanked by polypurine-polypyrimidine sequences suggested that under high torsional stress these sequences adopt unwound structures rendering these sites insensitive to restriction enzyme cleavage. In addition to polypurine-polypyrimidine sequences. HpaII sites flanked by alternating purine-pyrimidine sequence, a potential motif of left handed Z-DNA, were also found to be resistant to HpaII cleavage. Results obtained from various studies implicating structure sensitivity of restriction endonucleases and methylases were compiled and a direct correlation was observed between the occurrence of altered sites in a domain and its G/C content in pBR322 form V DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HP0593 DNA-(N-6-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5'-GCAG-3' and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co2+, Mn2+, and also Mg2+ stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type III restriction endonuclease EcoPI, coded by bacteriophage Fl, cleaves unmodified DNA in the presence of ATP and magnesium ions. We show that purified EcoPI restriction enzyme fails to cleave DNA in the presence of non-hydrolyzable ATP analogs. More importantly, this study demonstrates that EcoPI restriction enzyme has an inherent ATPase activity, and ATP hydrolysis is necessary for DNA cleavage. Furthermore, we show that the progress curve of the reaction with Eco PI restriction enzyme exhibits a lag which is dependent on the enzyme concentration. Kinetic analysis of the progress curves of the reaction suggest slow transitions that can occur during the reaction, characteristic of hysteretic enzymes. The role of ATP in the cleavage mechanism of type III restriction enzymes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EcoP15I DNA methyltransferase recognizes the sequence 5'-CAGCAG-3' and transfers a methyl group to N-6 of the second adenine residue in the recognition sequence. All N-6 adenine methyltransferases contain two highly conserved sequences, FxGxG (motif I), postulated to form part of the S-adenosyl-L-methionine binding site and (D/N/S)PP(Y/F) (motif IV) involved in catalysis. We have altered the second glycine residue in motif I to arginine and serine, and substituted tyrosine in motif IV with tryptophan in EcoP15I DNA methyltransferase, using site-directed mutagenesis. The mutant enzymes were overexpressed, purified and characterized by biochemical methods. The mutations in motif I completely abolished AdoMet binding but left target DNA recognition unaltered. Although the mutation in motif IV resulted in loss of enzyme activity, we observed enhanced crosslinking of S-adenosyl-L-methionine and DNA. This implies that DNA and AdoMet binding sites are close to motif IV. Taken together, these results reinforce the importance of motif I in AdoMet binding and motif IV in catalysis. Additionally, limited proteolysis and UV crosslinking experiments with EcoP15I DNA methyltransferase imply that DNA binds in a cleft formed by two domains in the protein. Methylation protection analysis provides evidence for the fact that EcoP15I DNA MTase makes contacts in the major groove of its substrate DNA. Interestingly, hypermethylation of the guanine residue next to the target adenine residue indicates that the protein probably flips out the target adenine residue. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.